Regents ELA 2009-06 Item Map

Stan	dard	Performance Indicator	Response
1	Information/Understanding	R-Read and follow written directions and procedures to solve problems and accomplish tasks	IB - MC16
1	Information/Understanding	L-Interpret and analyze information from media presentations, such as documentary films, news	IA - MC02
1	Information/Understanding	L-Interpret and analyze information from media presentations, such as documentary films, news	IA - MC03
1	Information/Understanding	L-Interpret and analyze information from media presentations, such as documentary films, news	IA - MC04
1	Information/Understanding	L-Interpret and analyze information from media presentations, such as documentary films, news	IA - MC05
1	Information/Understanding	R-Analyze and synthesize information from different sources, making connections and showing	IB - MC13
1	Information/Understanding	L-Interpret and analyze information from media presentations, such as documentary films, news	IA - MC01
1	Information/Understanding	R-Read and follow written directions and procedures to solve problems and accomplish tasks	IB - MC15
1	Information/Understanding	W-Analyze and integrate data, facts, and ideas to communicate information	IB - Writing-I
	Information/Understanding	W-Analyze and integrate data, facts, and ideas to communicate information	IA - Writing-I
	Information/Understanding	R-Read and follow written directions and procedures to solve problems and accomplish tasks	IB - MC14
2	Lit Response & Expression	R-Read, view, and interpret text and performances in every medium from a wide variety of authors,	IB - MC12
2	Lit Response & Expression	W-Write interpretive and responsive essays to compare the treatment of literary elements in	IIA - Writing-
2	Lit Response & Expression	R-Read, view, and interpret text and performances in every medium from a wide variety of authors,	IIA - MC10
2	Lit Response & Expression	L-Identify how format and language are used in presentations to communicate the author's messag	IA - MC06
2	Lit Response & Expression	R-Read, view, and interpret text and performances in every medium from a wide variety of authors,	IB - MC07
2	Lit Response & Expression	R-Read, view, and interpret text and performances in every medium from a wide variety of authors,	IB - MC08
2	Lit Response & Expression	R-Read, view, and interpret text and performances in every medium from a wide variety of authors,	IB - MC10
!	Lit Response & Expression	R-Monitor their own comprehension by questioning, reviewing, revising, and rereading to enhance	IIA - MC06

Wednesday, August 05, 2009

Star	ndard	Performance Indicator	Response
2	Lit Response & Expression	R-Interpret multiple levels of meaning and subtleties in text	IIA - MC09
2	Lit Response & Expression	R-Interpret multiple levels of meaning and subtleties in text	IIA - MC08
2	Lit Response & Expression	R-Analyze and evaluate fiction, including the effect of diction and figurative language.	IIA - MC07
2	Lit Response & Expression	W-Write interpretive and responsive essays to examine development and impact of literary element	IIB - Writing-Essay B
2	Lit Response & Expression	R-Read, view, and interpret text and performances in every medium from a wide variety of authors,	IIA - MC01
2	Lit Response & Expression	R-Read, view, and interpret text and performances in every medium from a wide variety of authors,	IIA - MC02
2	Lit Response & Expression	R-Read, view, and interpret text and performances in every medium from a wide variety of authors,	IIA - MC04
3	Critical Analysis & Eval	R-Analyze and evaluate nonfiction, identify text structure, using supports such as graphic organizer	IB - MC09
3	Critical Analysis & Eval	R-Analyze and evaluate fiction, including the effect of diction and figurative language.	IIA - MC03
3	Critical Analysis & Eval	R-Analyze and evaluate fiction, including the effect of diction and figurative language.	IIA - MC05
3	Critical Analysis & Eval	R-Form opinions and make judgments about the validity of interpretive texts	IB - MC11

Regents Chemistry 2009-06 Item Map

	Standard	Performance Indicator	Item #
1	Standard 1-Math	M1.1 Abstraction and symbolic representation	54-CR
1	Standard 1-Math	M1.1 Abstraction and symbolic representation	77-CR
1	Standard 1-Math	M1.1 Abstraction and symbolic representation	79-CR
1	Standard 1-Math	M2.1 Deductive and inductive reasoning	56-CR
1	Standard 1-Science	S1.1 Elaborate on basic scientific and personal explanations of natural phenomena	53-CR
1	Standard 1-Science	S1.1 Elaborate on basic scientific and personal explanations of natural phenomena	55-CR
А	Atomic Concepts	3.1a The modern model of the atom has evolved over a long period	66-CR
А	Atomic Concepts	3.1a The modern model of the atom has evolved over a long period	67-CR
А	Atomic Concepts	3.1e Protons and electrons have equal but opposite charges	01-MC
А	Atomic Concepts	3.1j When an electron in an atom gains a specific amount of energy, the electron	31-MC
А	Atomic Concepts	3.11 The outermost electrons in an atom are called the valence electrons	32-MC
А	Atomic Concepts	3.11 The outermost electrons in an atom are called the valence electrons	64-CR
А	Atomic Concepts	3.1m Atoms of an element that contain the same number of protons	63-CR
А	Atomic Concepts	3.1n The average atomic mass of an element is the weighted average of the masses	65-CR
В	Periodic Table	3.1g The number of protons in an atom (atomic number) identifies the element	03-MC
В	Periodic Table	3.1v Elements can be classified by their properties and located on the Periodic Table	04-MC
В	Periodic Table	3.1w Elements can be differentiated by physical properties	02-MC
В	Periodic Table	3.1w Elements can be differentiated by physical properties	06-MC
В	Periodic Table	3.1z For groups 1, 2, and 13-18 on the Periodic Table, elements within the same group have the	08-MC
С	Moles/Stoichiometry	3.1ccA compound is a substance composed of two or more different elements that	05-MC
С	Moles/Stoichiometry	3.1ii Isomers of organic compounds have the same molecular formula	80-CR

	Standard	Performance Indicator	Item #
С	Moles/Stoichiometry	3.2b Types of chemical reactions include synthesis, decomposition, single	34-MC
С	Moles/Stoichiometry	3.3a In all chemical reactions there is a conservation of mass, energy, and charge.	81-CR
С	Moles/Stoichiometry	3.3c A balanced chemical equation represents conservation of atoms	74-CR
С	Moles/Stoichiometry	3.3d The empirical formula of a compound is the simplest whole-number ratio	33-MC
С	Moles/Stoichiometry	3.3e The formula mass of a substance is the sum of the atomic masses of its atoms.	07-MC
С	Moles/Stoichiometry	3.3f The percent composition by mass of each element in a compound can be	83-CR
D	Chemical Bonding	5.2c When an atom gains one or more electrons, it becomes a negative ion	09-MC
D	Chemical Bonding	5.2e In a multiple covalent bond, more than one pair of electrons are shared	13-MC
D	Chemical Bonding	5.2h Metals tend to react with nonmetals to form ionic compounds. Nonmetals	11-MC
D	Chemical Bonding	5.2h Metals tend to react with nonmetals to form ionic compounds. Nonmetals	12-MC
D	Chemical Bonding	5.2l Molecular polarity can be determined by the shape of the molecule	10-MC
D	Chemical Bonding	5.2n Physical properties of substances can be explained in terms of chemical	57-CR
Е	Physical Beh. of Matter	3.1kk The three phases of matter (solids, liquids, and gases) have different properties.	19-MC
Е	Physical Beh. of Matter	3.1kk The three phases of matter (solids, liquids, and gases) have different properties.	82-CR
Е	Physical Beh. Of Matter	3.1nnDifferences in properties such as density, particle size, molecular polarity	38-MC
Е	Physical Beh. of Matter	3.1ooA solution is a homogeneous mixture of a solute dissolved in a solvent	71-CR
Е	Physical Beh. of Matter	3.1ooA solution is a homogeneous mixture of a solute dissolved in a solvent	73-CR
Е	Physical Beh. of Matter	3.1ppThe concentration of a solution may be expressed in molarity (M), percent	36-MC
Е	Physical Beh. of Matter	3.1ppThe concentration of a solution may be expressed in molarity (M), percent	37-MC
Е	Physical Beh. of Matter	3.1ppThe concentration of a solution may be expressed in molarity (M), percent	46-MC
Е	Physical Beh. of Matter	3.1qqThe addition of a nonvolatile solute to a solvent causes the boiling point	20-MC
Е	Physical Beh. of Matter	3.1r A pure substance (element or compound) has a constant	16-MC
Е	Physical Beh. of Matter	3.1s Mixtures are composed of two or more different substances that can be	39-MC

	Standard	Performance Indicator	Item #
Е	Physical Beh. of Matter	3.4a The concept of an ideal gas is a model to explain the behavior of gases	22-MC
Е	Physical Beh. of Matter	3.4b Kinetic molecular theory (KMT) for an ideal gas states that	17-MC
Е	Physical Beh. of Matter	3.4c Kinetic molecular theory describes the relationships of pressure, volume	51-CR
Е	Physical Beh. of Matter	3.4e Equal volumes of gases at the same temperature and pressure contain	52-CR
Е	Physical Beh. of Matter	4.1b Chemical and physical changes can be exothermic or endothermic.	14-MC
Е	Physical Beh. of Matter	4.2a Heat is a transfer of energy (usually thermal energy) from a body	35-MC
Е	Physical Beh. of Matter	4.2b Temperature is a measurement of the average kinetic energy of the particles	40-MC
Е	Physical Beh. of Matter	4.2c The concepts of kinetic and potential energy can be used to explain physical	59-CR
Е	Physical Beh. of Matter	5.2m Intermolecular forces created by the unequal distribution of charge result in varying	18-MC
F	Kinetics/Equilibrium	3.1II Entropy is a measure of the randomness or disorder of a system.	58-CR
F	Kinetics/Equilibrium	3.4d Collision theory states that a reaction is most likely to occur if reactant particles	41-MC
F	Kinetics/Equilibrium	3.4g A catalyst provides an alternate reaction pathway, which has a lower activation	76-CR
F	Kinetics/Equilibrium	3.4i At equilibrium the rate of the forward reaction equals the rate of the reverse	23-MC
F	Kinetics/Equilibrium	3.4j LeChatelier's principle can be used to predict the effect of stress (change	42-MC
F	Kinetics/Equilibrium	4.1c Energy released or absorbed during a chemical reaction can be	21-MC
G	Organic Chemistry	3.1gg Hydrocarbons are compounds that contain only carbon and hydrogen	24-MC
G	Organic Chemistry	3.1gg Hydrocarbons are compounds that contain only carbon and hydrogen	43-MC
G	Organic Chemistry	3.1hh Organic acids, alcohols, esters, aldehydes, ketones, ethers, halides	75-CR
G	Organic Chemistry	3.1ii Isomers of organic compounds have the same molecular formula	25-MC
Н	Oxidation-Reduction	3.2i Oxidation numbers (states) can be assigned to atoms and ions	44-MC
Н	Oxidation-Reduction	3.2k A voltaic cell spontaneously converts chemical energy to electrical energy.	45-MC
Н	Oxidation-Reduction	3.2k A voltaic cell spontaneously converts chemical energy to electrical energy.	60-CR
Н	Oxidation-Reduction	3.2k A voltaic cell spontaneously converts chemical energy to electrical energy.	61-CR

	Standard	Performance Indicator	Item #
Н	Oxidation-Reduction	3.2k A voltaic cell spontaneously converts chemical energy to electrical energy.	62-CR
I	Acids, Bases and Salts	3.1ss The acidity or alkalinity of an aqueous solution can be measured by its pH value.	48-MC
I	Acids, Bases and Salts	3.1tt On the pH scale, each decrease of one unit of pH represents a tenfold increase	47-MC
I	Acids, Bases and Salts	3.1vv Arrhenius acids yield H+(aq), hydrogen ion as the only positive ion	49-MC
T	Acids, Bases and Salts	3.1ww Arrhenius bases yield OH (aq), hydoroxide ion as the only negative ion	27-MC
T	Acids, Bases and Salts	3.1xx In the process of neutralization, an Arrhenius acid and an Arrhenius base	26-MC
I	Acids, Bases and Salts	3.1yy There are alternate acid-base theories. One theory states that an acid is an H+	28-MC
I	Acids, Bases and Salts	3.1zz Titration is a laboratory process in which a volume of a solution of known	78-CR
J	Nuclear Chemistry	3.1p Spontaneous decay can involve the release of alpha particles, beta particles	29-MC
J	Nuclear Chemistry	3.1p Spontaneous decay can involve the release of alpha particles, beta particles	30-MC
J	Nuclear Chemistry	3.1p Spontaneous decay can involve the release of alpha particles, beta particles	70-CR
J	Nuclear Chemistry	4.4a Each radioactive isotope has a specific mode and rate of decay (half-life).	68-CR
J	Nuclear Chemistry	4.4a Each radioactive isotope has a specific mode and rate of decay (half-life).	69-CR
J	Nuclear Chemistry	4.4d Radioactive isotopes have many beneficial uses. Radioactive isotopes are	50-MC
к	Reference Table	2002 Edition	15-MC
к	Reference Table	2002 Edition	72-CR

Regents Phy Set/Earth Science 2009-06 Item Map

K1.1 + Motion and Per1.2a The universe is vast and estimated to be over ten billion years oid01-MCK1.1 + Motion and Per1.2b Stars form when gravity causes clouds of molecules to contract02-MCK1.1 + Motion and Per1.1f Earth's changing position with regard to the Sun and the moon04-MCK1.1 + Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water06-MCK1.1 + Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water06-MCK1.1 + Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water10-MCK1.1 + Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water21-MCK1.1 + Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water23-MCK1.1 + Motion and Per1.2g Cologic history can be reconstructed by observing sequences of rock types and fossils23-MCK1.1 + Motion and Per1.2g Geologic history can be reconstructed by observing sequences of rock types and fossils39-MCK1.1 + Motion and Per1.1f Earth's changing position with regard to the Sun and the moon44-MCK1.1 + Motion and Per1.1f Earth's changing position with regard to the Sun and the moon44-MCK1.1 + Motion and Per1.1f Earth's changing position with regard to the Sun and the moon44-MCK1.1 + Motion and Per1.1f Earth's changing position with regard to the Sun and the moon44-MCK1.1 + Motion and Per1.1g Seasonal changes in the apparent positions of	Key Idea	Performance Indicator	Item #
KI. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon04-MCKI. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water05-MCKI. 1- Motion and Per1.1h The Sun's apparent path through the sky varies with latitude and season.06-MCKI. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water10-MCKI. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water21-MCKI. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water22-MCKI. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water23-MCKI. 1- Motion and Per1.2g Earth scontinuously been recycling water since the outgassing of water23-MCKI. 1- Motion and Per1.2g Earth's early atmosphere formed as a result of the outgassing of water vapor24-MCKI. 1- Motion and Per1.2g Earth's early atmosphere formed as a result of the outgassing of water vapor30-MCKI. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon39-MCKI. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCKI. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCKI. 1- Motion and Per1.1g Geologic history can be reconstructed by observing sequences of rock types and fossils51-CRKI. 1- Motion and Per1.2j Geologic history can b	K.I. 1- Motion and Per	1.2a The universe is vast and estimated to be over ten billion years old	01-MC
KI. 1- Motion and Per 1.2g Earth has continuously been recycling water since the outgassing of water	K.I. 1- Motion and Per	1.2b Stars form when gravity causes clouds of molecules to contract	02-MC
K.I. 1- Motion and Per1.1h The Sun's apparent path through the sky varies with latitude and season.06-MCK.I. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water10-MCK.I. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water21-MCK.I. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water22-MCK.I. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water vapor23-MCK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils23-MCK.I. 1- Motion and Per1.2g Geologic history can be reconstructed by observing sequences of rock types and fossils30-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon39-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1a Earth's changing position with regard to the Sun and the moon42-MCK.I. 1- Motion and Per1.1g Geologic history can be reconstructed by observing sequences of rock types and fossils42-MCK.I. 1- Motion and Per1.1g Earth's changing position with regard to the Sun and the moon44-MCK.I. 1- Motion and Per	K.I. 1- Motion and Per	1.1f Earth's changing position with regard to the Sun and the moon	04-MC
K.I. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water10-MCK.I. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water21-MCK.I. 1- Motion and Per1.2g Earth has continuously been recycling water since the outgassing of water22-MCK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils23-MCK.I. 1- Motion and Per1.2g Geologic history can be reconstructed by observing sequences of rock types and fossils24-MCK.I. 1- Motion and Per1.2g Geologic history can be reconstructed by observing sequences of rock types and fossils30-MCK.I. 1- Motion and Per1.2g Geologic history can be reconstructed by observing sequences of rock types and fossils30-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2g Geologic history can be reconstructed by observing sequences of rock types and fo	K.I. 1- Motion and Per	1.2g Earth has continuously been recycling water since the outgassing of water	05-MC
K.I. 1- Motion and Per 1.2g Earth has continuously been recycling water since the outgassing of water 21-MC K.I. 1- Motion and Per 1.2i The pattern of evolution of life-forms on Earth is at least partially 22-MC K.I. 1- Motion and Per 1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils 23-MC K.I. 1- Motion and Per 1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils 24-MC K.I. 1- Motion and Per 1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils 30-MC K.I. 1- Motion and Per 1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils 39-MC K.I. 1- Motion and Per 1.1f Earth's changing position with regard to the Sun and the moon 40-MC K.I. 1- Motion and Per 1.1f Earth's changing position with regard to the Sun and the moon 41-MC K.I. 1- Motion and Per 1.1g Seasonal changes in the apparent positions of constellations provide 42-MC K.I. 1- Motion and Per 1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour. 44-MC K.I. 1- Motion and Per 1.2g Geologic history can be reconstructed by observing sequences of rock types and fossils 58-CR K.I. 1- Motion and Per 1.2g Geologic history can be	K.I. 1- Motion and Per	1.1h The Sun's apparent path through the sky varies with latitude and season.	06-MC
K.I. 1- Motion and Per1.2 i The pattern of evolution of life-forms on Earth is at least partially22-MCK.I. 1- Motion and Per1.2 geologic history can be reconstructed by observing sequences of rock types and fossils23-MCK.I. 1- Motion and Per1.2 e Earth's early atmosphere formed as a result of the outgassing of water vapor24-MCK.I. 1- Motion and Per1.2 geologic history can be reconstructed by observing sequences of rock types and fossils30-MCK.I. 1- Motion and Per1.2 geologic history can be reconstructed by observing sequences of rock types and fossils30-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.2geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2geologic history can be reconstructed by observing sequences of rock types and fossils59-CR	K.I. 1- Motion and Per	1.2g Earth has continuously been recycling water since the outgassing of water	10-MC
K.I. 1- Motion and Per1.2) Geologic history can be reconstructed by observing sequences of rock types and fossils23-MCK.I. 1- Motion and Per1.2e Earth's early atmosphere formed as a result of the outgassing of water vapor24-MCK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils30-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon39-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide44-MCK.I. 1- Motion and Per1.1g Ceologic history can be reconstructed by observing sequences of rock types and fossils51-CRK.I. 1- Motion and Per1.2g Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by o	K.I. 1- Motion and Per	1.2g Earth has continuously been recycling water since the outgassing of water	21-MC
K.I. 1- Motion and Per1.2e Earth's early atmosphere formed as a result of the outgassing of water vapor24-MCK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils30-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon39-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon42-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CR	K.I. 1- Motion and Per	1.2i The pattern of evolution of life-forms on Earth is at least partially	22-MC
K.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils30-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon39-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CR	K.I. 1- Motion and Per	1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils	23-MC
K.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon39-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.1a Most objects in the solar system are in regular and predictable motion.51-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CR	K.I. 1- Motion and Per	1.2e Earth's early atmosphere formed as a result of the outgassing of water vapor	24-MC
K.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon40-MCK.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.1a Most objects in the solar system are in regular and predictable motion.51-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CR	K.I. 1- Motion and Per	1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils	30-MC
K.I. 1- Motion and Per1.1f Earth's changing position with regard to the Sun and the moon41-MCK.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.1a Most objects in the solar system are in regular and predictable motion.51-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CR	K.I. 1- Motion and Per	1.1f Earth's changing position with regard to the Sun and the moon	39-MC
K.I. 1- Motion and Per1.1g Seasonal changes in the apparent positions of constellations provide42-MCK.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.1a Most objects in the solar system are in regular and predictable motion.51-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils60-CR	K.I. 1- Motion and Per	1.1f Earth's changing position with regard to the Sun and the moon	40-MC
K.I. 1- Motion and Per1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.44-MCK.I. 1- Motion and Per1.1a Most objects in the solar system are in regular and predictable motion.51-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils.58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils.59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils.60-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils.60-CR	K.I. 1- Motion and Per	1.1f Earth's changing position with regard to the Sun and the moon	41-MC
K.I. 1- Motion and Per1.1a Most objects in the solar system are in regular and predictable motion.51-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils.58-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils.59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils.59-CRK.I. 1- Motion and Per1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils.60-CRK.I. 1- Motion and Per1.4j Accessing the performance of the perfo	K.I. 1- Motion and Per	1.1g Seasonal changes in the apparent positions of constellations provide	42-MC
K.I. 1- Motion and Per 1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils	K.I. 1- Motion and Per	1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.	44-MC
K.I. 1- Motion and Per 1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils 59-CR K.I. 1- Motion and Per 1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils 60-CR	K.I. 1- Motion and Per	1.1a Most objects in the solar system are in regular and predictable motion.	51-CR
K.I. 1- Motion and Per 1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils 60-CR	K.I. 1- Motion and Per	1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils	58-CR
	K.I. 1- Motion and Per	1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils	59-CR
K.I. 1- Motion and Per 1.1i Approximately 70 percent of the earths surface is covered by a relatively thin layer of water, 61-CR	K.I. 1- Motion and Per	1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils	60-CR
	K.I. 1- Motion and Per	1.1i Approximately 70 percent of the earths surface is covered by a relatively thin layer of water,	61-CR

Monday, July 06, 2009

Key Idea	Performance Indicator	Item #
K.I. 1- Motion and Per	1.1a Most objects in the solar system are in regular and predictable motion.	62-CR
K.I. 1- Motion and Per	1.1a Most objects in the solar system are in regular and predictable motion.	63-CR
K.I. 1- Motion and Per	1.1b Nine planets move around the Sun in nearly circular orbits	73-CR
K.I. 1- Motion and Per	1.1d Earth rotates on an imaginary axis at a rate of 15 degrees per hour.	74-CR
K.I. 1- Motion and Per	1.1b Nine planets move around the Sun in nearly circular orbits	76-CR
K.I. 2- Air, Water & La	2.2a Insolation (solar radiation) heats Earth's surface and atmosphere unequally due	03-MC
K.I. 2- Air, Water & La	2.1e Weather variables are interrelated.	07-MC
K.I. 2- Air, Water & La	2.2a Insolation (solar radiation) heats Earth's surface and atmosphere unequally due	09-MC
K.I. 2- Air, Water & La	2.11 The lithosphere consists of separate plates that ride on the more fluid	11-MC
K.I. 2- Air, Water & La	2.1r Climate variations, structure, and characteristics of bedrock influence	12-MC
K.I. 2- Air, Water & La	2.1u The natural agents of erosion include	15-MC
K.I. 2- Air, Water & La	2.1v Patterns of deposition result from a loss of energy within the transporting system	16-MC
K.I. 2- Air, Water & La	2.1w Sediments of inorganic and organic origin often accumulate	18-MC
K.I. 2- Air, Water & La	2.2a Insolation (solar radiation) heats Earth's surface and atmosphere unequally due	20-MC
K.I. 2- Air, Water & La	2.1n Many of Earth's surface features such as mid-ocean ridges/rifts, trenches/subduction	26-MC
K.I. 2- Air, Water & La	2.1u The natural agents of erosion include	27-MC
K.I. 2- Air, Water & La	2.2c A location's climate is influenced by latitude, proximity to large bodies of water	31-MC
K.I. 2- Air, Water & La	2.2b The transfer of heat energy within the atmosphere, the hydrosphere, and Earth's surface	32-MC
K.I. 2- Air, Water & La	2.2b The transfer of heat energy within the atmosphere, the hydrosphere, and Earth's surface	35-MC
K.I. 2- Air, Water & La	2.1g Weather variables can be represented in a variety of formats including radar	36-MC
K.I. 2- Air, Water & La	2.1d Weather variables are measured using instruments such as thermometers	37-MC
K.I. 2- Air, Water & La	2.1h Atmospheric moisture, temperature and pressure distributions; jet streams, wind	38-MC
K.I. 2- Air, Water & La	2.2c A location's climate is influenced by latitude, proximity to large bodies of water	43-MC

Key Idea	Performance Indicator	Item #
K.I. 2- Air, Water & La	2.1u The natural agents of erosion include	45-MC
K.I. 2- Air, Water & La	2.1v Patterns of deposition result from a loss of energy within the transporting system	47-MC
K.I. 2- Air, Water & La	2.1u The natural agents of erosion include	48-MC
K.I. 2- Air, Water & La	2.1j Properties of Earth's internal structure (crust, mantle, inner core, and outer core)	49-MC
K.I. 2- Air, Water & La	2.1g Weather variables can be represented in a variety of formats including radar	52-CR
K.I. 2- Air, Water & La	2.2a Insolation (solar radiation) heats Earth's surface and atmosphere unequally due	55-CR
K.I. 2- Air, Water & La	2.2a Insolation (solar radiation) heats Earth's surface and atmosphere unequally due	57-CR
K.I. 2- Air, Water & La	2.1h Atmospheric moisture, temperature and pressure distributions; jet streams, wind	66-CR
K.I. 2- Air, Water & La	2.1g Weather variables can be represented in a variety of formats including radar	67-CR
K.I. 2- Air, Water & La	2.1f Air temperature, dewpoint, cloud formation, and precipitation are affected by	68-CR
K.I. 2- Air, Water & La	2.1q Topographic maps represent landforms through the use of contour lines that are isolines	71-CR
K.I. 2- Air, Water & La	2.1q Topographic maps represent landforms through the use of contour lines that are isolines	72-CR
K.I. 2- Air, Water & La	2.11 The lithosphere consists of separate plates that ride on the more fluid	77-CR
K.I. 2- Air, Water & La	2.1m Many processes of the rock cycle are consequences of plate dynamics.	78-CR
K.I. 2- Air, Water & La	2.11 The lithosphere consists of separate plates that ride on the more fluid	79-CR
K.I. 2- Air, Water & La	2.1h Atmospheric moisture, temperature and pressure distributions; jet streams, wind	81-CR
K.I. 2- Air, Water & La	2.1r Climate variations, structure, and characteristics of bedrock influence	83-CR
K.I. 3- Matter-Rcks &	3.1c Rocks are usually composed of one or more minerals	33-MC
K.I. 3- Matter-Rcks &	3.1a Minerals have physical properties determined by their chemical composition	34-MC
K.I. 3- Matter-Rcks &	3.1c Rocks are usually composed of one or more minerals	46-MC
K.I. 3- Matter-Rcks &	3.1a Minerals have physical properties determined by their chemical composition	82-CR
K.I. 3- Matter-Rcks &	3.1a Minerals have physical properties determined by their chemical composition	84-CR
K.I. 3- Matter-Rcks &	3.1a Minerals have physical properties determined by their chemical composition	85-CR

Key Idea	Performance Indicator	Item #
Performance Test Sco	Performance Test Score	86-Performance Score
Standard 1	M1 Abstraction and symbolic representation are used	08-MC
Standard 1	M2 Deductive and inductive reasoning are used to reach mathematical conclusions.	14-MC
Standard 1	S1 The central purpose of scientific inquiry is to develop explanations of natural phenomena	19-MC
Standard 1	M2 Deductive and inductive reasoning are used to reach mathematical conclusions.	25-MC
Standard 1	S1 The central purpose of scientific inquiry is to develop explanations of natural phenomena	29-MC
Standard 1	M2 Deductive and inductive reasoning are used to reach mathematical conclusions.	50-MC
Standard 1	M2 Deductive and inductive reasoning are used to reach mathematical conclusions.	53-CR
Standard 1	M1 Abstraction and symbolic representation are used	54-CR
Standard 1	M2 Deductive and inductive reasoning are used to reach mathematical conclusions.	56-CR
Standard 1	M2 Deductive and inductive reasoning are used to reach mathematical conclusions.	64-CR
Standard 1	M2 Deductive and inductive reasoning are used to reach mathematical conclusions.	65-CR
Standard 1	M1 Abstraction and symbolic representation are used	69-CR
Standard 1	M1 Abstraction and symbolic representation are used	70-CR
Standard 1	M1 Abstraction and symbolic representation are used	75-CR
Standard 1	M3 Critical thinking skills are used in the solution	80-CR
Standard 6	2 Models are simplified representations of objects, structures, or systems used in analysis	13-MC
Standard 6	2 Models are simplified representations of objects, structures, or systems used in analysis	17-MC
Standard 6	2 Models are simplified representations of objects, structures, or systems used in analysis	28-MC

Regents Living Environment 2009-06 Item Map

Standard	Performance Indicator	Item	
Appendix A	Living Environment - Laboratory Checklist	50-CR	
K.I. 1-Sim. And Differ.	1.1a Populations can be categorized by the function they serve	34-MC	
K.I. 1-Sim. And Differ.	1.1a Populations can be categorized by the function they serve	47-CR	
K.I. 1-Sim. And Differ.	1.1a Populations can be categorized by the function they serve	48-CR	
K.I. 1-Sim. And Differ.	1.1b An ecosystem is shaped by the nonliving environment as well as its interacting	49-MC	
K.I. 1-Sim. And Differ.	1.1d The interdependence of organisms in an established ecosystem often results	01-MC	
K.I. 1-Sim. And Differ.	1.1f Every population is linked, directly or indirectly, with many others in an ecosystem.	55-CR	
K.I. 1-Sim. And Differ.	1.2e The organs and systems of the body help to provide all the cells with their basic	02-MC	
K.I. 1-Sim. And Differ.	1.2h Many organic and inorganic substances dissolved in cells allow necessary	17-MC	
K.I. 1-Sim. And Differ.	1.2i Inside the cell a variety of specialized structures, formed from many different	03-MC	
K.I. 1-Sim. And Differ.	1.2j Receptor molecules play an important role in the interactions between cells. Two	35-MC	
K.I. 2-Genetic Info.	2.1c Hereditary information is contained in genes, located in the chromosomes of each cell.	28-MC	
K.I. 2-Genetic Info.	2.1d In asexually reproducing organisms, all the genes come from a single parent	15-MC	
K.I. 2-Genetic Info.	2.1d In asexually reproducing organisms, all the genes come from a single parent	22-MC	
K.I. 2-Genetic Info.	2.1i The work of the cell is carried out by the many different types of molecules it assembles	08-MC	
K.I. 2-Genetic Info.	2.1k The many body cells in an individual can be very different from one another, even	04-MC	
K.I. 2-Genetic Info.	2.1k The many body cells in an individual can be very different from one another, even	05-MC	
K.I. 2-Genetic Info.	2.2c Different enzymes can be used to cut, copy, and move segments of DNA.	10-MC	
K.I. 2-Genetic Info.	2.2e Knowledge of genetics is making possible new fields of health care, for example, finding	31-MC	
K.I. 3-Change Over Time	3.1b New inheritable characteristics can result from new combinations of existing genes	11-MC	

Standard	Performance Indicator	Item
K.I. 3-Change Over Time	3.1b New inheritable characteristics can result from new combinations of existing genes	59-CR
K.I. 3-Change Over Time	3.1c Mutation and the sorting and recombining of genes during meiosis and fertilization	12-MC
K.I. 3-Change Over Time	3.1d Mutations occur as random chance events. Gene mutations can also be caused by such agents	16-MC
K.I. 3-Change Over Time	3.1f Species evolve over time. Evolution is the consequence of the interactions of (1) the	37-MC
K.I. 3-Change Over Time	3.1g Some characteristics give individuals an advantage over others in surviving and	40-MC
K.I. 3-Change Over Time	3.1k Evolution does not necessitate long-term progress in some set direction.	36-MC
K.I. 4-Reprod. & Devel.	4.1d The zygote may divide by mitosis and differentiate to form the specialized cells	14-MC
K.I. 4-Reprod. & Devel.	4.1e Human reproduction and development are influenced by factors	06-MC
K.I. 4-Reprod. & Devel.	4.1f The structures and functions of the human female reproductive system, as in	51-CR
K.I. 5-Dynamic Equil.	5.1b Plant cells and some one-celled organisms contain chloroplasts	13-MC
K.I. 5-Dynamic Equil.	5.1d In all organisms, the energy stored in organic molecules may be released during	32-MC
K.I. 5-Dynamic Equil.	5.1e The energy from ATP is used by the organism to obtain, transform, and transport materials	18-MC
K.I. 5-Dynamic Equil.	5.2b Viruses, bacteria, fungi, and other parasites may infect plants and animals and interfere	19-MC
K.I. 5-Dynamic Equil.	5.2b Viruses, bacteria, fungi, and other parasites may infect plants and animals and interfere	56-CR
K.I. 5-Dynamic Equil.	5.2d Some white blood cells engulf invaders. Others produce antibodies that attack	57-CR
K.I. 5-Dynamic Equil.	5.2e Vaccinations use weakened microbes (or parts of them) to stimulate the immune	58-CR
K.I. 5-Dynamic Equil.	5.2f Some viral diseases, such as AIDS, damage the immune system, leaving the body	20-MC
K.I. 5-Dynamic Equil.	5.3b Feedback mechanisms have evolved that maintain homeostasis. Examples include	21-MC
K.I. 5-Dynamic Equil.	5.3b Feedback mechanisms have evolved that maintain homeostasis. Examples include	33-MC
K.I. 6-Dependence	6.1a Energy flows through ecosystems in one direction, typically from the Sun	07-MC
K.I. 6-Dependence	6.1a Energy flows through ecosystems in one direction, typically from the Sun	39-MC
K.I. 6-Dependence	6.1b The atoms and molecules on the Earth cycle among the living and nonliving components	38-MC
K.I. 6-Dependence	6.1c The chemical elements, such as carbon, hydrogen, nitrogen and oxygen	25-MC

	Performance Indicator	Item
K.I. 6-Dependence	6.1c The chemical elements, such as carbon, hydrogen, nitrogen and oxygen	26-MC
K.I. 6-Dependence	6.1d The number of organisms any habitat can support (carrying capacity) is limited by	42-CR
K.I. 6-Dependence	6.1e In any particular environment, the growth and survival of organisms depend on the	41-MC
K.I. 6-Dependence	6.1f Living organisms have the capacity to produce populations of unlimited size	23-MC
K.I. 6-Dependence	6.2a As a result of the evolutioary processes, there is a diversity of organisms and roles in	09-MC
K.I. 6-Dependence	6.2a As a result of the evolutioary processes, there is a diversity of organisms and roles in	24-MC
K.I. 7-Human Decisions	7.1a The Earth has finite resources; increasing human consumption of resources places	30-MC
K.I. 7-Human Decisions	7.1b Natural ecosystems provide an array of basic processes that affect humans	27-MC
K.I. 7-Human Decisions	7.1b Natural ecosystems provide an array of basic processes that affect humans	54-CR
K.I. 7-Human Decisions	7.1c Human beings are part of the Earth's ecosystems. Human activities can, deliberately	29-MC
K.I. 7-Human Decisions	7.1c Human beings are part of the Earth's ecosystems. Human activities can, deliberately	52-CR
L1 Relation/Biodiversity	Genetics Skill	60-CR
L1 Relation/Biodiversity	Genetics Skill	61-CR
L1 Relation/Biodiversity	Genetics Skill	63-CR
L1 Relation/Biodiversity	Genetics Skill	70-MC
L2 Making Connections	Human Physiology Content	66-CR
L2 Making Connections	Scientific Method Skill	64-MC
L2 Making Connections	Scientific Method Skill	65-CR
L3 Beaks of Finches	Evolution Skill	71-MC
L3 Beaks of Finches	Evolution Skill	72-CR
L5 Diffusion/Osmosis	Transport Skill	62-MC
L5 Diffusion/Osmosis	Transport Skill	67-MC
L5 Diffusion/Osmosis	Transport Skill	68-CR

Standard	Performance Indicator	Item
L5 Diffusion/Osmosis	Transport Skill	69-MC
Standard 1	2 Beyond the use of reasoning and concensus, scientific inquiry involves the testing of proposed	53-CR
Standard 1	3.1 Use various methods of representing and organizing observations (e.g.,diagrams, tables)	43-CR
Standard 1	3.1 Use various methods of representing and organizing observations (e.g.,diagrams, tables)	44-CR
Standard 1	3.1 Use various methods of representing and organizing observations (e.g.,diagrams, tables)	45-MC
Standard 1	3.1 Use various methods of representing and organizing observations (e.g.,diagrams, tables)	46-MC

Regents Physics 2009-06 Item Map

4.1.Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition14-MC4.1.Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition15-MC4.1.Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition16-MC4.1.Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition18-MC4.1.Trans. of Energ4.1m The factors affecting resistance in a conductor are length, cross-sectional area,18-MC4.1.Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature19-MC4.1.Trans. of Energ4.11 Students can observe and transcribe transmission of various forms of energy.20-MC4.1.Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition36-MC4.1.Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.41-MC4.1.Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1.Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1.Trans. of Energ4.1o Circuit components may be connected in series or in parallel45-MC4.1.Trans. of Energ4.1o Circuit components may be connected in series or in parallel47-MC4.1.Trans. of Energ4.1o Circuit components may be connected in series or in parallel </th <th>Standard</th> <th>Performance Indicator</th> <th>Item #</th>	Standard	Performance Indicator	Item #
4.1-Trans. of Energ 4.1e han ideal mechanical system, the sum of the macroscopic kinetic and potential energies 15-MC 4.1-Trans. of Energ 4.1c Potential energy is the energy an object possesses by virtue of its position or condition 16-MC 4.1-Trans. of Energ 4.1m The factors affecting resistance in a conductor are length, cross-sectional area, 18-MC 4.1-Trans. of Energ 4.11 MI materials display a range of conductivity. At constant temperature 19-MC 4.1-Trans. of Energ 4.11 Students can observe and transcribe transmission of various forms of energy. 20-MC 4.1-Trans. of Energ 4.1c Potential energy is the energy an object possesses by virtue of its position or condition 36-MC 4.1-Trans. of Energ 4.1c Potential energy is the energy an object possesses by virtue of its position or condition 36-MC 4.1-Trans. of Energ 4.1g When work is done on or by a system, there is a change in the total energy of the system. 41-MC 4.1-Trans. of Energ 4.1g When work is done on or by a system, there is a change in the total energy of the system. 43-MC 4.1-Trans. of Energ 4.1g When work is done on or by a system, there is a change in the total energy of the system. 43-MC 4.1-Trans. of Energ 4.1g When work is done on or by a system, there is a change in the total energy of the system. 43-MC 4.1-	4.1-Trans. of Energ	4.1 Students can observe and transcribe transmission of various forms of energy.	13-MC
4.1-Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition16-MC4.1-Trans. of Energ4.1m The factors affecting resistance in a conductor are length, cross-sectional area,18-MC4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature19-MC4.1-Trans. of Energ4.1 Students can observe and transcribe transmission of various forms of energy.20-MC4.1-Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition36-MC4.1-Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition36-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.41-MC4.1-Trans. of Energ4.1h Work done against friction results in an increase in the internal energy of the system.43-MC4.1-Trans. of Energ4.1h Work done against friction results in an increase in the internal energy of the system.43-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.1p Electrical power and energy can be determined for electric circuits56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and pot	4.1-Trans. of Energ	4.1c Potential energy is the energy an object possesses by virtue of its position or condition	14-MC
4.1-Trans. of Energ4.1m The factors affecting resistance in a conductor are length, cross-sectional area,18-MC4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature19-MC4.1-Trans. of Energ4.11 Students can observe and transcribe transmission of various forms of energy.20-MC4.1-Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition36-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.41-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.42-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature45-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.10 Licrcuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.1	4.1-Trans. of Energ	4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies	15-MC
4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature19-MC4.1-Trans. of Energ4.11 Students can observe and transcribe transmission of various forms of energy.20-MC4.1-Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition36-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.41-MC4.1-Trans. of Energ4.1h Work done against friction results in an increase in the internal energy of the system.42-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel45-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.1e Licuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.1e Licuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies64-CR	4.1-Trans. of Energ	4.1c Potential energy is the energy an object possesses by virtue of its position or condition	16-MC
4.1-Trans. of Energ4.1 Students can observe and transcribe transmission of various forms of energy.20-MC4.1-Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition36-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.41-MC4.1-Trans. of Energ4.1h Work done against friction results in an increase in the internal energy of the system.42-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies64-CR	4.1-Trans. of Energ	4.1m The factors affecting resistance in a conductor are length, cross-sectional area,	18-MC
4.1-Trans. of Energ4.1c Potential energy is the energy an object possesses by virtue of its position or condition36-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.41-MC4.1-Trans. of Energ4.1h Work done against friction results in an increase in the internal energy of the system.42-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature45-MC4.1-Trans. of Energ4.1o Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.1o Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.1o Circuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.1p Electrical power and energy can be determined for electric circuits56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.11 All materials display a range of conductivity. At constant temperature	19-MC
4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.41-MC4.1-Trans. of Energ4.1h Work done against friction results in an increase in the internal energy of the system.42-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature45-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.1p Electrical power and energy can be determined for electric circuits56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.1 Students can observe and transcribe transmission of various forms of energy.	20-MC
4.1-Trans. of Energ4.1h Work done against friction results in an increase in the internal energy of the system.42-MC4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature45-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.10 Electrical power and energy can be determined for electric circuits63-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.1c Potential energy is the energy an object possesses by virtue of its position or condition	36-MC
4.1-Trans. of Energ4.1g When work is done on or by a system, there is a change in the total energy of the system.43-MC4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature45-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel56-CR4.1-Trans. of Energ4.1e ln an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.1g When work is done on or by a system, there is a change in the total energy of the system.	41-MC
4.1-Trans. of Energ4.11 All materials display a range of conductivity. At constant temperature45-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.1p Electrical power and energy can be determined for electric circuits56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.1h Work done against friction results in an increase in the internal energy of the system.	42-MC
4.1-Trans. of Energ4.1o Circuit components may be connected in series or in parallel46-MC4.1-Trans. of Energ4.1o Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.1o Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.1p Electrical power and energy can be determined for electric circuits56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.1g When work is done on or by a system, there is a change in the total energy of the system.	43-MC
4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel47-MC4.1-Trans. of Energ4.10 Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.1p Electrical power and energy can be determined for electric circuits56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.11 All materials display a range of conductivity. At constant temperature	45-MC
4.1-Trans. of Energ4.1o Circuit components may be connected in series or in parallel55-CR4.1-Trans. of Energ4.1p Electrical power and energy can be determined for electric circuits56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.10 Circuit components may be connected in series or in parallel	46-MC
4.1-Trans. of Energ4.1p Electrical power and energy can be determined for electric circuits56-CR4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.10 Circuit components may be connected in series or in parallel	47-MC
4.1-Trans. of Energ4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies63-CR4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.10 Circuit components may be connected in series or in parallel	55-CR
4.1-Trans. of Energ4.1d Kinetic energy is the energy an object possesses by virtue of its motion.64-CR	4.1-Trans. of Energ	4.1p Electrical power and energy can be determined for electric circuits	56-CR
	4.1-Trans. of Energ	4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies	63-CR
4.3-Wavelength and 4.3c The model of a wave incorporates the characteristics of amplitude, wavelength 23-MC	4.1-Trans. of Energ	4.1d Kinetic energy is the energy an object possesses by virtue of its motion.	64-CR
	4.3-Wavelength and	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	23-MC

Standard	Performance Indicator	Item #
4.3-Wavelength and	4.3dThe energy of a photon is proportional to its frequency.	24-MC
4.3-Wavelength and	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	25-MC
4.3-Wavelength and	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	26-MC
4.3-Wavelength and	4.3h When a wave strikes a boundary between two media, reflection, transmission	27-MC
4.3-Wavelength and	4.3j The absolute index of refraction is inversely proportional to the speed of a wave.	28-MC
4.3-Wavelength and	4.3m When waves of a similar nature meet, the resulting interference may be explained	29-MC
4.3-Wavelength and	4.3f Resonance occurs when energy is transferred to a system at its natural frequency.	30-MC
4.3-Wavelength and	4.3e Waves are categorized by the direction in which particles in a medium vibrate	57-CR
4.3-Wavelength and	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	58-CR
4.3-Wavelength and	4.3n When a wave source and an observer are in relative motion, the observed frequency	59-CR
4.3-Wavelength and	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	66-CR
4.3-Wavelength and	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	67-CR
4.3-Wavelength and	4.3 Students can explain variations in wavelength and frequency in terms of the source of the	68-CR
4.3-Wavelength and	4.3 Students can explain variations in wavelength and frequency in terms of the source of the	69-CR
4.3-Wavelength and	4.3k All frequencies of electromagnetic radiation travel at the same speed in a vacuum.	70-CR
5.1-Patterns of Moti	5.1d An object in linear motion may travel with a constant velocity or with acceleration.	01-MC
5.1-Patterns of Moti	5.1b A vector may be resolved into perpendicular components.	02-MC
5.1-Patterns of Moti	5.1a Measured quantities can be classified as either vector or scalar.	03-MC
5.1-Patterns of Moti	5.1d An object in linear motion may travel with a constant velocity or with acceleration.	04-MC
5.1-Patterns of Moti	5.1g A projectile's time of flight is dependent upon the vertical component of its motion.	05-MC
5.1-Patterns of Moti	5.1h The horizontal displacement of a projectile is dependent upon	06-MC

Standard	Performance Indicator	Item #
5.1-Patterns of Moti	5.1n Centripetal force is the net force which produces centripetal acceleration	07-MC
5.1-Patterns of Moti	5.1n Centripetal force is the net force which produces centripetal acceleration	08-MC
5.1-Patterns of Moti	5.1 Students can explain and predict different patterns of motion of objects (e.g. linear and)	09-MC
5.1-Patterns of Moti	5.1k According to Newton's Second Law, an unbalanced force causes a mass to accelerate.	10-MC
5.1-Patterns of Moti	5.1j When the net force on a system is zero, the system is in equilibrium.	11-MC
5.1-Patterns of Moti	5.11 Weight is the gravitational force with which a planet attracts a mass.	12-MC
5.1-Patterns of Moti	5.1u The inverse square law applies to electrical and gravitational fields	17-MC
5.1-Patterns of Moti	5.1t Gravitational forces are only attractive, whereas electrical and magnetic forces can	21-MC
5.1-Patterns of Moti	5.1t Gravitational forces are only attractive, whereas electrical and magnetic forces can	22-MC
5.1-Patterns of Moti	5.1u The inverse square law applies to electrical and gravitational fields	34-MC
5.1-Patterns of Moti	5.1d An object in linear motion may travel with a constant velocity or with acceleration.	37-MC
5.1-Patterns of Moti	5.1d An object in linear motion may travel with a constant velocity or with acceleration.	38-MC
5.1-Patterns of Moti	5.11 Weight is the gravitational force with which a planet attracts a mass.	39-MC
5.1-Patterns of Moti	5.1p The impulse imparted to an object causes a change in its momentum	40-MC
5.1-Patterns of Moti	5.1c The resultant of two or more vectors, acting at any angle, is determined by vector addition.	48-CR
5.1-Patterns of Moti	5.1q According to Newton's Third Law, forces occur in action/reaction pairs	49-CR
5.1-Patterns of Moti	5.1r Momentum is conserved in a closed system.	50-CR
5.1-Patterns of Moti	5.1n Centripetal force is the net force which produces centripetal acceleration	51-CR
5.1-Patterns of Moti	5.1m The elongation or compression of a spring depends upon the nature of the spring	52-CR
5.1-Patterns of Moti	5.1s Field strength and direction are determined using a suitable test particle	53-CR
5.1-Patterns of Moti	5.1s Field strength and direction are determined using a suitable test particle	54-CR

Standard	Performance Indicator	Item #
5.1-Patterns of Moti	5.1h The horizontal displacement of a projectile is dependent upon	60-CR
5.1-Patterns of Moti	5.1g A projectile's time of flight is dependent upon the vertical component of its motion.	61-CR
5.1-Patterns of Moti	5.1g A projectile's time of flight is dependent upon the vertical component of its motion.	62-CR
5.1-Patterns of Moti	5.1d An object in linear motion may travel with a constant velocity or with acceleration.	65-CR
5.3-Energy Relation	5.3b Charge is quantized on two levels. On the atomic level	31-MC
5.3-Energy Relation	5.3c On the atomic level, energy is emitted or absorbed in discrete packets called photons.	32-MC
5.3-Energy Relation	5.3e On the atomic level, energy and matter exhibit the characteristics of both waves and particles.	33-MC
5.3-Energy Relation	5.3g The Standard Model of Particle Physics has evolved	35-MC
5.3-Energy Relation	5.3d The energy of a photon is proportional to its frequency.	44-MC
5.3-Energy Relation	5.3d The energy of a photon is proportional to its frequency.	71-CR
Standard 1	M1.1 Use algebraic and geometric representations to describe and compare data.	72-CR

Regents Geometry 2009-06 Item Map

Strand	Performance Indicator	Item #
Constructions	G.17 Construct a bisector of a given angle, using a straightedge and compass, and justify the	25-MC
Constructions	G.19 Construct lines parallel (or perpendicular) to a given line through a given point, using a	30-CR
Coordinate Geometry	G.64 Find the equation of a line, given a point on the line and the equation of a line perpendicular	07-MC
Coordinate Geometry	G.71 Write the equation of a circle, given its center and radius or given the endpoints of a	10-MC
Coordinate Geometry	G.66 Find the midpoint of a line segment, given its endpoints.	19-MC
Coordinate Geometry	G.73 Find the center and radius of a circle, given the equation of the circle in center-radius form	20-MC
Coordinate Geometry	G.73 Find the center and radius of a circle, given the equation of the circle in center-radius form	22-MC
Coordinate Geometry	G.70 Solve systems of equations involving one linear equation and one quadratic equation graphic	23-MC
Coordinate Geometry	G.63 Determine whether two lines are parallel, perpendicular, or neither given their equations.	26-MC
Coordinate Geometry	G.65 Find the equation of a line, given a point on the line and the equation of a line parallel to	31-CR
Coordinate Geometry	G.67 Find the length of a line segment, given its endpoints.	36-CR
Geometric Relationships	G.13 Apply the properties of a regular pyramid, including: lateral edges are congruent, lateral face	04-MC
Geometric Relationships	G.02 Know and apply that through a given point there passes one and only one plane perpendicula	18-MC
Geometric Relationships	G.15 Apply the properties of a right circular cone, including: lateral area equals one-half the prod	21-MC
Geometric Relationships	G.08 Know and apply that if a plane intersects two parallel planes, then the intersection if two	28-MC
Informal & Formal Proofs	G.30 Investigate, justify and apply theorems about the sum of the measures of the angles of a	01-MC
Informal & Formal Proofs	G.28 Determine the congruence of two triangles by using one of the five congruence techniques	02-MC
Informal & Formal Proofs	G.51 Investigate, justify and apply theorems about the arcs determined by the rays of angles forme	06-MC
Informal & Formal Proofs	G.36 Investigate, justify and apply theorems about the sum of the measures of the interior and	09-MC

Tuesday, August 04, 2009

Strand	Performance Indicator	Item #
Informal & Formal Proofs	G.33 Investigate, justify and apply the triangle inequality theorem.	11-MC
Informal & Formal Proofs	G.26 Identify and write the inverse, converse, and contrapositive of a given conditional statement	13-MC
Informal & Formal Proofs	G.43 Investigate, justify and apply theorems about the centroid of a triangle, dividing each median	14-MC
Informal & Formal Proofs	G.47 Investigate, justify and apply theorems about mean proportionality: the altitude to the	15-MC
Informal & Formal Proofs	G.53 Investigate, justify and apply theorems regarding segments intersected by a circle: along two	16-MC
Informal & Formal Proofs	G.44 Establish similarity of triangles, using the following theorems: AA, SAS, and SSS.	17-MC
Informal & Formal Proofs	G.32 Investigate, justify and apply theorems about geometric inequalities, using the exterior angle	24-MC
Informal & Formal Proofs	G.46 Investigate, justify and apply theorems about proportional relationships among the segments	27-MC
Informal & Formal Proofs	G.42 Investigate, justify and apply theorems about geometric relationships, based on the properties	29-CR
Informal & Formal Proofs	G.25 Know and apply the conditions under which a compound statement (conjunction, disjunction	33-CR
Informal & Formal Proofs	G.45 Investigate, justify and apply theorems about similar triangles.	34-CR
Informal & Formal Proofs	G.50 Investigate, justify and apply theorems about tangent lines to a circle: a perpendicular to	35-CR
Informal & Formal Proofs	G.29 Identify corresponding parts of congruent triangles.	38-CR
Locus	G.22 Solve problems using compound loci.	12-MC
Locus	G.23 Graph and solve compound loci in the coordinate plane.	32-CR
Transformational Geometry	G.56 Identify specific isometries by observing orientation, numbers of invariant points, and/or	03-MC
Transformational Geometry	G.61 Investigate, justify and apply the analytical representations for translations, rotations about	05-MC
Transformational Geometry	G.58 Define, investigate, justify and apply similarities (dilations and the composition of dilations	08-MC
Transformational Geometry	G.58 Define, investigate, justify and apply similarities (dilations and the composition of dilations	37-CR

Regents Integrated Algebra 2009-06

Strand	Performance Indicator	Item #
Algebra	A.27 Understand and apply the multiplication property of zero to solve quadratic equations with	02-MC
Algebra	A.12 Multiply and divide monomial expressions with a comman base, using the properties of exponents.	03-MC
Algebra	A.01 Translate a quantitative verbal phrase into an algebriac expression.	04-MC
Algebra	A.04 Translate verbal sentences into mathematical equations or inequalitites.	06-MC
Algebra	A.25 Solve equations involving fractional expressions. (result in linear equations in one variable)	07-MC
Algebra	A.45 Determine the measure of a third side of a right triangle using the Pythagorean theorem, given	09-MC
Algebra	A.07 Analyze and solve verbal problems whose solution requires solving systems of linear equations	12-MC
Algebra	A.23 Solve literal equations for a given variable.	13-MC
Algebra	A.24 Solve linear inequalities in one variable.	14-MC
Algebra	A.15 Find values of variable for which an algebriac fraction is undefined.	16-MC
Algebra	A.06 Analyze and solve verbal problems whose solution requires solving a linear equation in one	17-MC
Algebra	A.41 Determine the vertex and axis of symmetry of a parabola, given its equation. (See A.G.10)	18-MC
Algebra	A.16 Simplify fractions with polynomials in the numerator and denominator by factoring both and	21-MC
Algebra	A.34 Write the equation of a line, given its slope and the coordinates of a point on the line.	22-MC
Algebra	A.13 Add, subtract, and multiply monomials and polynomials.	23-MC
Algebra	A.10 Solve systems of two linear equations in two variables algebraically.	25-MC
Algebra	A.17 Add or subtract fractional expressions with monomial or like binomial denominators.	29-MC
Algebra	A.29 Use set-builder notation and/or interval notation to illustrate the elements of a set, given	30-MC
Algebra	A.20 Factor algebraic expressions completely, including trinomials with a lead coefficient of one.	32-CR

Strand	Performance Indicator	Item #
Algebra	A.09 Analyze and solve verbal problems that involve exponential growth and decay.	35-CR
Algebra	A.44 Find the measure of a side of a right triangle, given an acute angle and the length of another	37-CR
Geometry	G.03 Determine when a relation is a function, by examining ordered pairs and inspecting graphs of	19-MC
Geometry	G.06 Graph linear inequalitites	20-MC
Geometry	G.08 Find the roots of a parabolic function graphically.	24-MC
Geometry	G.01 Find the area and/or perimeter of figures composed of polygons and circles or sectors of a	34-CR
Geometry	G.09 Solve systems of linear and quadratic equations graphically.	39-CR
Measurement	M.01 Calculate rates using appropriate units (e.g., rate of a space ship versus the rate of a snail)	01-MC
Measurement	M.02 Solve problems involving conversions within measurement systems, given the relationship between	11-MC
Measurement	M.03 Calculate the relative error in measuring square and cubic units, when there is an error in the	28-MC
Number Sense/Ope	N.02 Simplify radical terms (no variable in the radicand)	10-MC
Number Sense/Ope	N.01 Identify and apply the properties of real numbers (closure, commutative, associative, etc)	26-MC
Number Sense/Ope	N.04 Understand and use scientific notation to compute products and quotients of numbers	27-MC
Number Sense/Ope	N.08 Determine the number of possible arrangements (permutations) of a list of items.	31-CR
Statistics/Probability	S.01 Categorize data as qualitative or quantitative.	05-MC
Statistics/Probability	S.23 Calculate the probability of: a series of independent events, a series of dependent events, two	08-MC
Statistics/Probability	S.09 Analyze and interpret a frequency distribution table or histogram, a cumulative frequency dist	15-MC
Statistics/Probability	S.23 Calculate the probability of: a series of independent events, a series of dependent events, two	33-CR
Statistics/Probability	S.08 Construct manually a reasonable line of best fit for a scatter plot and determine the equation	36-CR
Statistics/Probability	S.05 Construct a histogram, cumulative frequency histogram, and a box-and-whisker plot, given a set	38-CR

Regents Math B 2009-06 Item Map

Standard	Performance Indicator	Item #
Mathematical Reasoni	Construct proofs based on deductive reasoning	34-CR
Measurement	Derive and apply formulas relating angle measure and arc degree measur	24-CR
Measurement	Derive and apply formulas relating angle measure and arc degree measur	01-MC
Measurement	Relate trigonometric relationships to the area of a triangle and to general	22-CR
Measurement	Relate trigonometric relationships to the area of a triangle and to general	33-CR
Measurement	Derive and apply formulas relating angle measure and arc degree measur	04-MC
Measurement	Use trigonometry as a method to measure indirectly	31-CR
Modeling/Representati	Manipulate symbolic representations to explore concepts at an abstract le	12-MC
Modeling/Representati	Use polynomial, trigonometric and exponential functions to model real wor	13-MC
Modeling/Representati	Use algebraic relationships to analyze the conic sections	11-MC
Modeling/Representati	Represent problem situations symbolically using algebraic expressions, s	09-MC
Modeling/Representati	Use algebraic relationships to analyze the conic sections	08-MC
Modeling/Representati	Represent problem situations symbolically using algebraic expressions, s	18-MC
Modeling/Representati	Manipulate symbolic representations to explore concepts at an abstract le	25-CR
Modeling/Representati	Represent graphically the sum and difference of two complex numbers	06-MC
Modeling/Representati	Use circular functions to study and model periodic real-world phenomena	20-MC
Number and Numerati	Understand and use rational and irrational numbers	19-MC
Number and Numerati	Understand and use rational and irrational numbers	05-MC
Number and Numerati	Understand and use rational and irrational numbers	10-MC

Standard	Performance Indicator	Item #
Operations	Use transformations on figures and functions in the coordinate plane	28-CR
Operations	Use addition, subtraction, multiplication, division, and exponentiation with	29-CR
Patterns/Functions	Solve equations, using fractions, absolute values and radicals	07-MC
Patterns/Functions	Use function vocabulary and notation	02-MC
Patterns/Functions	Apply the ideas of symmetries in sketching and analyzing graphs of functi	14-MC
Patterns/Functions	Solve equations, using fractions, absolute values and radicals	15-MC
Patterns/Functions	Use the normal curve to answer questions about data	17-MC
Patterns/Functions	Evaluate and form the composition of functions	21-CR
Patterns/Functions	Represent and analyze functions, using verbal descriptions, tables, etc	23-CR
Patterns/Functions	Represent and analyze functions, using verbal descriptions, tables, etc	26-CR
Patterns/Functions	Develop methods to solve trigonometric equations and verify trigonometri	32-CR
Uncertainty	Use curve fitting to fit data	27-CR
Uncertainty	Interpret probabilities in real world situations	30-CR
Uncertainty	Create and interpret applications of discrete and continuous probability dis	03-MC
Uncertainty	Use a Bernoulli experiment to determine probabilities for experiments with	16-MC

Regents Global History 2009-06 Item Map

Standard Pe	erformance Indicator	Unit Iten	n #
World History	2.1b Understand the development and connectedness of Western civilization and other civiliza	01-Introduction to Global Hist	I-02
World History	2.2e Investigate key events and developments and major turning points in world history to ide	02-Ancient World	I-03
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	02-Ancient World	I-05
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	03-Expanding Zones of Excha	I-07
World History	2.1d Understand the broad patterns, relationships, and interactions of cultures and civilizations	03-Expanding Zones of Excha	I-08
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	03-Expanding Zones of Excha	I-09
World History	2.2e Investigate key events and developments and major turning points in world history to ide	04-Global Interactions	I-12
World History	2.3c Examine the social/cultural, political, economic, and religious norms and values of Weste	03-Expanding Zones of Excha	I-15
World History	2.2e Investigate key events and developments and major turning points in world history to ide	04-Global Interactions	I-16
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	05-First Global Age	I-19
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	06-Age of Revolution	I-22
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	06-Age of Revolution	I-23
World History	2.1a Define culture and civilization, explaining how they developed and changed over time.	06-Age of Revolution	I-24
World History	2.2e Investigate key events and developments and major turning points in world history to ide	07-Crisis and Achievement	I-25
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	07-Crisis and Achievement	I-29
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	08-20th Century since 1945	I-31
World History	2.2e Investigate key events and developments and major turning points in world history to ide	08-20th Century since 1945	I-32
World History	2.1d Understand the broad patterns, relationships, and interactions of cultures and civilizations	08-20th Century since 1945	I-35
World History	2.1b Understand the development and connectedness of Western civilization and other civiliza	08-20th Century since 1945	I-36

Tuesday, August 04, 2009

Standard Pe	erformance Indicator	Unit Item	n #
World History	2.2c Analyze evidence critically and demonstrate an understanding of how circumstances of ti	09-Global Connections and Int	I-37
World History	2.3b Explain the dynamics of cultural change and how interactions between and among cultur	03-Expanding Zones of Excha	I-41
World History	2.3c Examine the social/cultural, political, economic, and religious norms and values of Weste	04-Global Interactions	I-42
World History	2.1b Understand the development and connectedness of Western civilization and other civiliza	05-First Global Age	I-44
World History	2.3a Analyze the roles and contributions of individuals and groups to social, political, economi	06-Age of Revolution	I-48
World History	2.1b Understand the development and connectedness of Western civilization and other civiliza	08-20th Century since 1945	I-50
World History	2.3b Explain the dynamics of cultural change and how interactions between and among cultur	10-Cross Topical	II-Essay
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	03-Expanding Zones of Excha	IIIA-01-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	03-Expanding Zones of Excha	IIIA-02-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	03-Expanding Zones of Excha	IIIA-03-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	06-Age of Revolution	IIIA-04A-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	06-Age of Revolution	IIIA-04B-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	06-Age of Revolution	IIIA-05-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	06-Age of Revolution	IIIA-06A-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	06-Age of Revolution	IIIA-06B-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	09-Global Connections and Int	IIIA-07-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	09-Global Connections and Int	IIIA-08-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	09-Global Connections and Int	IIIA-09A-DBQ
World History	2.4b Interpret and analyze documents and artifacts related to significant developments and ev	09-Global Connections and Int	IIIA-09B-DBQ
World History	Cross Topical	10-Cross Topical	IIIB-Essay
Geography	3.1c Investigate the characteristics, distribution and migration of human populations on the Ea	01-Introduction to Global Hist	I-01

Standard P	erformance Indicator	Unit It	em #
Geography	3.1c Investigate the characteristics, distribution and migration of human populations on the Ea	02-Ancient World	I-04
Geography	3.1d Understand the development and interactions of social/cultural, political, economic, and	02-Ancient World	I-06
Geography	3.2d Analyze geographic information by developing and testing inferences and hypotheses, an	04-Global Interactions	I-11
Geography	3.1d Understand the development and interactions of social/cultural, political, economic, and	04-Global Interactions	I-13
Geography	3.2d Analyze geographic information by developing and testing inferences and hypotheses, an	05-First Global Age	I-14
Geography	3.1f Explain how technological change affects people, places and regions.	05-First Global Age	I-17
Geography	3.1e Analyze how the forces of cooperation and conflict among people influence the division a	06-Age of Revolution	I-26
Geography	3.1e Analyze how the forces of cooperation and conflict among people influence the division a	06-Age of Revolution	I-27
Geography	3.1f Explain how technological change affects people, places and regions.	09-Global Connections and	Int I-39
Geography	3.1c Investigate the characteristics, distribution and migration of human populations on the Ea	02-Ancient World	I-45
Geography	3.1c Investigate the characteristics, distribution and migration of human populations on the Ea	02-Ancient World	I-46
Geography	3.1f Explain how technological change affects people, places and regions.	04-Global Interactions	I-47
Geography	3.1e Analyze how the forces of cooperation and conflict among people influence the division a	08-20th Century since 1945	5 I-49
Economics	4.1c Understand the nature of scarcity and how nations of the world make choices which invol	04-Global Interactions	I-10
Economics	4.1b Define and apply basic economic concepts such as scarcity, supply/demand, opportunity	05-First Global Age	I-18
Economics	4.1b Define and apply basic economic concepts such as scarcity, supply/demand, opportunity	06-Age of Revolution	I-21
Economics	4.1c Understand the nature of scarcity and how nations of the world make choices which invol	07-Crisis and Achievement	I-28
Economics	4.1f Explain how economic decision making has become global as a result of an interdepende	08-20th Century since 1945	i I-33
Economics	4.1c Understand the nature of scarcity and how nations of the world make choices which invol	08-20th Century since 1945	5 I-34
Economics	4.1a Analyze the effectiveness of varying ways societies, nations, and regions of the world att	09-Global Connections and	Int I-38
Economics	4.1c Understand the nature of scarcity and how nations of the world make choices which invol	08-20th Century since 1945	6 I-40

Standard	Performance Indicator	Unit	Item #
Economics	4.1b Define and apply basic economic concepts such as scarcity, supply/demand, opportunity	05-First Global Age	I-43
Civics,Citizenship&Gov't	5.1a Analyze how the values of a nation and international organizations affect the guarantee o	05-First Global Age	I-20
Civics,Citizenship&Gov't	5.1a Analyze how the values of a nation and international organizations affect the guarantee o	07-Crisis and Achieveme	ent I-30

Regents US HistoryGov't 2009-06 Item Map

Standard	Performance Indicator	Unit 1	Response #
Geography	3.1d Understand the development and interactions of social/cultural,	political, economic, and 01-Introduction: Geography	I-01
US & NY History	1.1a Analyze the development of American culture, explaining how ic	eas, values, beliefs, an 02-Constitutional Foundations	I-14
US & NY History	1.1b Describe the evolution of American democratic values and belie	fs as expressed in the 02-Constitutional Foundations	I-10
US & NY History	1.2e Analyze the United States involvement in foreign affairs and a w	illingness to engage in 02-Constitutional Foundations	I-12
US & NY History	1.3a Compare and contrast the experience of different ethnic, nation	al and religious groups, 02-Constitutional Foundations	I-17
US & NY History	1.3a Compare and contrast the experience of different ethnic, nation	al and religious groups, 02-Constitutional Foundations	I-16
US & NY History	1.3a Compare and contrast the experience of different ethnic, nation	al and religious groups, 02-Constitutional Foundations	I-15
US & NY History	1.3a Compare and contrast the experience of different ethnic, nation	al and religious groups, 02-Constitutional Foundations	I-04
World History	2.2e Investigate key events and developments and major turning poi	nts in world history to id 02-Constitutional Foundations	I-05
Economics	4.1a Analyze the effectiveness of varying ways societies, nations, an	d regions of the world at 02-Constitutional Foundations	I-02
Economics	4.1c Understand the nature of scarcity and how nations of the world	nake choices which inv 02-Constitutional Foundations	I-03
Civics, Citizenship&	Go 5.1b Consider the nature and evolution of constitutional democracies	throughout the world. 02-Constitutional Foundations	I-07
Civics, Citizenship&	Go 5.1b Consider the nature and evolution of constitutional democracies	throughout the world. 02-Constitutional Foundations	I-06
Civics, Citizenship&	Go 5.2e Understand the dynamic relationship between federalism and st	ate's rights. 02-Constitutional Foundations	I-09
Civics,Citizenship&	Go 5.3a Understand how ciitizenship includes the exercise of certain per	sonal responsibilities, 02-Constitutional Foundations	I-08
Civics,Citizenship&	Go 5.3c Describe how citizenship is defined by the Constitution and impo	ortant laws. 02-Constitutional Foundations	I-11
Civics,Citizenship&	Go 5.3c Describe how citizenship is defined by the Constitution and impo	ortant laws. 02-Constitutional Foundations	I-13
US & NY History	1.3b Research and analyze the major themes and developments in N	IY State and US history 03-Industrialization of the US	I-18
Geography	3.1f Explain how technological change affects people, places and rec	ions 03-Industrialization of the US	I-19
Economics	Cross Topical	03-Industrialization of the US	IIIA-07B-DBC
US & NY History	Cross Topical	03-Industrialization of the US	IIIA-01-DBQ

Standard	Performance Indicator	Unit	ţ	Response #
US & NY History	Cross Topical		03-Industrialization of the US	IIIA-05-DBQ
US & NY History	Cross Topical		03-Industrialization of the US	IIIA-04-DBQ
US & NY History	Cross Topical		03-Industrialization of the US	IIIA-07A-DBQ
US & NY History	Cross Topical		03-Industrialization of the US	IIIA-02-DBQ
US & NY History	Cross Topical		03-Industrialization of the US	IIIA-08-DBQ
US & NY History	Cross Topical		03-Industrialization of the US	IIIA-03-DBQ
US & NY History	1.1a Analyze the development of American culture, exp	laining how ideas, values, beliefs, an	04-The Progressive Movement	I-22
US & NY History	1.1a Analyze the development of American culture, exp	laining how ideas, values, beliefs, an	04-The Progressive Movement	I-20
US & NY History	1.2e Analyze the United States involvement in foreign a	ffairs and a willingness to engage in	04-The Progressive Movement	I-24
US & NY History	1.2e Analyze the United States involvement in foreign a	ffairs and a willingness to engage in	04-The Progressive Movement	I-26
US & NY History	1.2e Analyze the United States involvement in foreign a	ffairs and a willingness to engage in	04-The Progressive Movement	I-21
Economics	4.1d Describe the ideals, principles, structure, practices	, accomplishments, and problems rel	04-The Progressive Movement	I-23
Civics,Citizenship&	Go 5.3c Describe how citizenship is defined by the Constitu	ition and important laws.	04-The Progressive Movement	I-25
Economics	Cross Topical		04-The Progressive Movement	IIIA-06-DBQ
US & NY History	Cross Topical		04-The Progressive Movement	IIIA-09-DBQ
US & NY History	1.1b Describe the evolution of American democratic val	ues and beliefs as expressed in the	05-At Home & Abroad: 1917-194	0 I-27
US & NY History	1.3b Research and analyze the major themes and deve	lopments in NY State and US history	05-At Home & Abroad: 1917-194	0 I-30
US & NY History	1.4a Analyze historical narratives about key events in N	YS and US history to identify the fact	05-At Home & Abroad: 1917-194	0 I-32
Geography	3.1d Understand the development and interactions of se	ocial/cultural, political, economic, and	05-At Home & Abroad: 1917-194	0 I-28
Economics	4.1a Analyze the effectiveness of varying ways societie	s, nations, and regions of the world at	05-At Home & Abroad: 1917-194	0 I-31
Economics	4.1b Define and apply basic economic concepts such a	s scarcity, supply/demand, opportunit	05-At Home & Abroad: 1917-194	0 I-29
US & NY History	1.1a Analyze the development of American culture, exp	laining how ideas, values, beliefs, an	06-US in the Age of Global Crisis	I-35
US & NY History	1.1a Analyze the development of American culture, exp	laining how ideas, values, beliefs, an	06-US in the Age of Global Crisis	I-37

Standard	Performance Indicator Un	nit Re	esponse #
US & NY History	1.2e Analyze the United States involvement in foreign affairs and a willingness to engage in	06-US in the Age of Global Crisis	I-36
US & NY History	1.4a Analyze historical narratives about key events in NYS and US history to identify the fact	06-US in the Age of Global Crisis	I-33
US & NY History	1.4a Analyze historical narratives about key events in NYS and US history to identify the fact	06-US in the Age of Global Crisis	I-34
US & NY History	1.2c Compare and contrast the experiences of different groups in the United States	07-World in Uncertain Times: 1950-	I-49
US & NY History	1.2c Compare and contrast the experiences of different groups in the United States	07-World in Uncertain Times: 1950-	I-45
US & NY History	1.2e Analyze the United States involvement in foreign affairs and a willingness to engage in	07-World in Uncertain Times: 1950-	I-40
US & NY History	1.2e Analyze the United States involvement in foreign affairs and a willingness to engage in	07-World in Uncertain Times: 1950-	I-48
US & NY History	1.2e Analyze the United States involvement in foreign affairs and a willingness to engage in	07-World in Uncertain Times: 1950-	I-47
US & NY History	1.2e Analyze the United States involvement in foreign affairs and a willingness to engage in	07-World in Uncertain Times: 1950-	I-42
World History	2.1d Understand the broad patterns, relationships, and interactions of cultures and civilizatio	07-World in Uncertain Times: 1950-	· I-39
World History	2.3a Analyse the roles and contributions of individuals and groups to social, political, econo	07-World in Uncertain Times: 1950-	I-44
Geography	3.1d Understand the development and interactions of social/cultural, political, economic, and	07-World in Uncertain Times: 1950-	l-38
Geography	3.1f Explain how technological change affects people, places and regions	07-World in Uncertain Times: 1950-	I-50
Civics,Citizenship&0	Go 5.1b Consider the nature and evolution of constitutional democracies throughout the world.	07-World in Uncertain Times: 1950-	I-43
Civics,Citizenship&0	Go 5.2c Identify, respect, and model those core civic values inherent in our founding documents	07-World in Uncertain Times: 1950-	I-41
Civics,Citizenship&C	Go 5.3c Describe how citizenship is defined by the Constitution and important laws.	07-World in Uncertain Times: 1950-	I-46
US & NY History	1.3c Prepare essays and oral reports about the important social, political, economic, scientifi	Cross Topical	IIIB-Essay
US & NY History	1.3c Prepare essays and oral reports about the important social, political, economic, scientifi	Cross Topical	II-Essay

Regents Spanish Profic 2009-06 Item Map

Topic	Skills	Item Response #
Speaking	1.1d Use strategies to initiate and engage in conversations with native speakers	IA-CR1
Speaking	1.1d Use strategies to initiate and engage in conversations with native speakers	IB-CR2
Speaking	1.1d Use strategies to initiate and engage in conversations with native speakers	IB-CR3
Speaking	1.1d Use strategies to initiate and engage in conversations with native speakers	IB-CR4
Speaking	1.1d Use strategies to initiate and engage in conversations with native speakers	IB-CR5
Education	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC01
Leisure	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC02
Travel	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC03
Education	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC04
Travel	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC05
Education	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC06
Making a living	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC07
Travel	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC08
Education	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC09
Shopping	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIA-MC10
Physical Environment	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIB-MC11
Family	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIB-MC12
Making a living	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIB-MC13
Travel	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIB-MC14

Friday, July 31, 2009

Topic	Skills	Item Response #
Travel	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIB-MC15
Travel	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIC-MC16
House and Home	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIC-MC17
Physical Environment	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIC-MC18
Leisure	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIC-MC19
Meal Taking/Food/Drink	1.1a Comprehend simple language in face-to-face conversation with peers and familiar ad	IIC-MC20
Leisure	1.2a Understand the main ideas of informative materials	IIIA-MC21
Leisure	1.2a Understand the main ideas of informative materials	IIIA-MC22
Leisure	1.2a Understand the main ideas of informative materials	IIIA-MC23
Leisure	1.2a Understand the main ideas of informative materials	IIIA-MC24
Leisure	1.2a Understand the main ideas of informative materials	IIIA-MC25
Physical Environment	1.2a Understand the main ideas of informative materials	IIIA-MC26
Travel	1.2a Understand the main ideas of informative materials	IIIB-MC27
Travel	1.2a Understand the main ideas of informative materials	IIIB-MC28
Leisure	1.2a Understand the main ideas of informative materials	IIIB-MC29
Leisure	1.2a Understand the main ideas of informative materials	IIIB-MC30
Leisure	1.2b Compose short, informal notes and messages to exchange information	IV-Essay-31
Personal information	1.2b Compose short, informal notes and messages to exchange information	IV-Essay-32
Health/welfare	1.2b Compose short, informal notes and messages to exchange information	IV-Essay-33

Regents Spanish Comp 2009-06 Item Map

Topic	Peformance Indicator	Item Response #
Community/Neighborhood	1.2a Read and comprehend materials written for native speakers when the t	3A-MC17
Community/Neighborhood	1.1b Understand the main idea and some discrete information in television,	2A-MC02
Community/Neighborhood	1.2a Read and comprehend materials written for native speakers when the t	3A-MC16
Community/Neighborhood	1.2a Read and comprehend materials written for native speakers when the t	3A-MC18
Community/Neighborhood	1.2a Read and comprehend materials written for native speakers when the t	3A-MC19
Community/Neighborhood	1.2a Read and comprehend materials written for native speakers when the t	3A-MC20
Community/Neighborhood	1.2c Read simple materials independently, but may have to guess at meanin	3C-MC26
Community/Neighborhood	1.2c Read simple materials independently, but may have to guess at meanin	3C-MC28
Community/Neighborhood	1.2c Read simple materials independently, but may have to guess at meanin	3C-MC29
Community/Neighborhood	1.2c Read simple materials independently, but may have to guess at meanin	3C-MC30
Community/Neighborhood	1.2c Read simple materials independently, but may have to guess at meanin	3C-MC27
Cross Topical	1.2f Produce written narratives and expressions of opinion about radio and t	4-Essay-33
Earning a Living	1.2d Write short notes, uncomplicated personal and business letters, brief jo	4-Essay-32
Earning a Living	1.2b Use cognates and contextual and visual cues to derive meaning from te	3B-MC23
Earning a Living	1.1b Understand the main idea and some discrete information in television,	2A-MC04
Education	1.1a Comprehend messages and short conversations when listening to peer	2A-MC03
Education	1.1b Understand the main idea and some discrete information in television,	2B-MC10
Education	1.1b Understand the main idea and some discrete information in television,	2B-MC15
Leisure	1.1b Understand the main idea and some discrete information in television,	2B-MC13

Friday, July 10, 2009

Topic	Peformance Indicator	Item Response #
Leisure	1.1a Comprehend messages and short conversations when listening to peer	2A-MC01
Leisure	1.1b Understand the main idea and some discrete information in television,	2A-MC05
Leisure	1.1b Understand the main idea and some discrete information in television,	2A-MC06
Leisure	1.1b Understand the main idea and some discrete information in television,	2B-MC12
Leisure	1.2d Write short notes, uncomplicated personal and business letters, brief jo	4-Essay-31
Meal Taking/Food/Drink	1.2a Read and comprehend materials written for native speakers when the t	3B-MC22
Meal Taking/Food/Drink	1.1b Understand the main idea and some discrete information in television,	2B-MC14
Personal Information	1.1b Understand the main idea and some discrete information in television,	2B-MC11
Personal Information	1.1b Understand the main idea and some discrete information in television,	2A-MC08
Personal Information	1.1a Comprehend messages and short conversations when listening to peer	2A-MC07
Physical Environment	1.2a Read and comprehend materials written for native speakers when the t	3B-MC21
Public and Private Serv	1.2b Use cognates and contextual and visual cues to derive meaning from te	3B-MC25
Shopping	1.1b Understand the main idea and some discrete information in television,	2A-MC09
Speaking	Cross Topical	1-Speaking
Travel	1.2a Read and comprehend materials written for native speakers when the t	3B-MC24